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Abstract

It has been demonstrated that classical probabilities,
and in particular, probabilistic Turing machine, can be
simulated by combining chaos and non- Lipschitz
dynamics, without utilization of any man-made
devices (such as random number generators). Self-
organizing properties of systems coupling simulated
and calculated probabilities and their link to quantum
computations are discussed. Special attention was
focused upon coupled stochastic processes, defined
in terms of conditional probabilities, for which joint
probability does not
probabilities are also

Classical dynamics is fully

exist. Simulations of quantum
discussed.

deterministic if initial conditions are known

exactly. Otherwise in some non-linear systems, small initial errors may grow

exponentially so that the system behavior attains stochastic-like features, and

such a behavior is called chaotic. The discovery of chaos contributed in better

understanding of irreversibility in dynamics, of evolution in nature, and in

interpretation and modeling of complex phenomena in physics and biology.

However, there is a class of phenomena which cannot be represented by chaos

directly. This class includes so called discrete events dynamics where

randomness appears as point events, i.e., there is a sequence of random

occurrences at fixed or random times, but there is no additional component of

uncertainty between these times. The simplest example of such a phenomenon
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is a heartbeat dynamics which, in the first approximation, can be modeled by a

sequence of pulses of equal heights and durations, but the durations of the

pauses between these pulses are randomly distributed, Most processes of this

type are associated with intellectual activities such as optimal behavior,

decision making process, games, etc. In general, discrete events dynamics is

characterized by a well-defined probabilistic structure of a piece wise-

deterministic Markov chains, and it can be represented by probabilistic Turing

machine. On the contrary, a probabilistic structure of chaos, and even the

appearance of chaos at all, cannot be predicted based only upon the

underlying model without actual numerical runs. (The last statement can be

linked to the Richardson’s (1968) proof that the theory of elementary functions

in classical analysis is undecidable).

chaos and discrete events dynamics?

based only upon physical laws without

E3ut is there a “missing link” between

And if it is, can this link be simulated

exploiting any man-made devices such

as random number generators? A positive answer to this question would make

a fundamental contribution to the reductionists view on intrinsic unity of science

that all natural phenomena are reducible to physical laws. However, in addition

to this philosophical aspect, there is a computational advantage in exploiting

simulated probabilities instead of calculated ones in the probabilistic Turing

machine: as shown by R. Feynman (1982), the exponential complexity of

algorithms in terms of calculated probabilities can be reduced to polynomial

complexity in terms of simulated probabilities.

In this paper we demonstrate that the missing link between chaos and a
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discrete event process’ can be represented by non-Lipschitz  dynamics, (Zak,

1994, 1996.)



In order to illustrate the basic concepts of non- Lipschitz  dynamics.

consider a rectilinear motion of a particle of unit mass driven by a non- Lipschitz

force:

(1)

(2)

where v and x are the particle velocity and position, respectively.

Subject to the zero initial condition

v= o at t = o (3)

equation (1) has a singular solution

I)=o (4)

and a regular solution

“=+(%’’’:’)’”
(5)

These two solutions coexist at t = O, and this is possible because at this

point the Lipschitz C(

Since

ndition fails:

+7 ) o at ]vl # (), t)()
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the singular solution (4) is unstable, and the particle departs from rest following

the solution (5). This solution has two (positive and negative) branches [since

the power in (5) includes the square root], and each branch can be chosen with

the probability p and (1 -p) respectively. It should be noticed that as a result of

(5), the motion of the particle can be initiated by infinitesimal disturbances (such

motion never can occur when the Lipschitz condition holds: an infinitesimal

initial disturbance cannot become finite in finite time).

Strictly speaking, the solution (5) is valid only in the time interval

(8)

and at t s 27r/ co it coincides with the singular solution (4)

For 1 ) 27r/ [o equation (4) becomes unstable, and the motion repeats

itself to the accuracy of the sign in equation (5).

Hence, the particle velocity I) performs oscillations with respect to its

zero value in such a way that the positive and negative branches of the solution

(5) alternate randomly after each period equal to 27r/ CO.

Turning to equation (2), one obtains the distance between two adjacent

equilibrium position of the particle:
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Thus, the equilibrium positions of the particle are



*

.

1,, == (), x, = 2-/?, X2 =:d h+ h... ( l o )

while the positive and negative signs randomly alternate with probabilities p

and (1 -p), respectively.

Obviously, the particle performs an unrestricted random walk: after each

time period

it changes its value on +h [see equation (10)].

The probability density f(x,t) is governed by the following difference

equation:

j-(x, t +- t)= pj’(x - }), t)+ (1 -- p)j-(x + h,t) (12)

which represents a discrete version of the Fokker-Planck equation,

while

(13)

Several comments to the model (1) and its solution have to be made.

Firstly, the “viscous” force

t’= –VV1’3 (14)

includes static friction (see Eq, 6) which actually causes failure of the Lipschitz

condition. These type of forces are well-known in theory of visco-plasticity (H.
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Ziegler, 1963). It should be noticed that the power l/3 can be replaced by any

power of the type:

~=~g--l_.._, 1] =: 1,2,,.. Ctc
2/1+1

(15)

with the same final result (1 2). In particular, by selecting large n, one can make

k close to 1, so that the force (13) will be almost identical to its classical

counterpart

};, = - ,1~ (16)

everywhere excluding a small neighborhood of the equilibrium point V= =(),

while at this point

[IF JF— –> co,
(Iv

but >;. +() at v –-) () (17)

Secondly, without the failure of the Lipschitz condition (6), the solution to

Eq. (1) could not approach its equilibrium v = O in finite time, and therefore, the

paradigm leading to random walk (12) would not be possible.

Finally, we have to discuss the infinitesimal disturbances mentioned in

connection with the instability of the solutions (5) at v =0. Actually the original

equation should be written in the form:
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where c(() represents a time series sampled from an underlying stochastic

process representing infinitesimal disturbances. It should be emphasized that

this process is not driving the solution of Eq. (1 8): it only triggers the

mechanism of instability which controls the energy supply via the harmonic

oscillations sincot. As follows from Eq. (1 8), the function s(f) can be ignored

when ; = O or when ; # O, but the equation is stable, i.e. v == no.), 2?’1[o,,...  ctL:.

However, it becomes significant during the instants of instability when ;)= () at

t = O, 7r/2co etc. Indeed, at these instants, the solution to Eq. (1) has a choice to

be positive or negative if E = O, (see Eq. (5)). However, with s ~ 0,

,~ig)l x = .~ig}~ c at t = O, zl 2(o,...  c[c (19)

i.e., the sign of E at the critical instances

evolution of the dynamical system (18).

of time (19) uniquely defines the

Thus, the dynamical system (18)

transforms a stochastic process (via its sample c(I))  into a binary time series

which, in turn, generates a random-walk-paradigm (1 8). Actually the solution to

Eq. (18) represents a statistical signature of the stochastic process & .

Within the framework of dynamical formalism, the time series 8(1) can be

generated by a fully deterministic (but chaotic) dynamical system. The simplest

of such system is the logistic map which plays a central role in population

dynamics, chemical kinetics and many other fields. In its chaotic domain

yn,, = 4yn(l - yn), y,, = ().2 (20)
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the power spectrum for the solution is indistinguishable from a white noise.

However, for the better match with Eq. (18), we will start with a continuous

version of (20) represented by the following time-delay equation.

to Eq.

y(f -1 T)= 4.Y(f)[l  -.Y(l)]>  7= j%

J’(f*)= ().2, -z;; (t* (T:;

(21)

(22)

The solution to Eq. (21) at t=O, 7r/2[o,... etc., coincides with the solution

(20), but due to the specially selected initial condition (22), the solution to

Eq. (20) changes its values at t = –—n-,  -*-, . . . . etc., so that at the points
4[0 4(0

t = o ,  K12(0,... , the sign of this solution is well-defined.

Now assume that

s(t) = E(, (y(l) –(),51), s,, (( 1.

The subtraction from y(t) its mean value provides the condition

]1+ -1)=:
Indeed, for the first hundred points in (23),

–+-F-+-+-+–-+–-+––-––  –+-+++––+-

S’igt? c =
––++–+–  +––++’–-  –-+-+-- –++–+

+–++-++-+––++++++- ++++++-––+

(23)

(24)

(25)

+–– -–++-– –-t-- +-– –-+---
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has equal number of positive and negative values

correlated, Therefore, the statistical signature of the

expressed by the solution to Eqs.  (1 2), (13) at p = ~

~(t),O)  = 1, f(x, ()) = O if x # O

which is a symmetric unrestricted random walk:

which are practically not

chaotic time series (23) is

with the initial conditions

(26)

(27)

Here the binomial coefficient should be interpreted as O whenever m is not an

integer in the interval [(), H], and n is the total number of steps.

The connection between the solution (26) and the solutions to the system

(1 8), (21), (2) should be understood as follows. Suppose we solve the system

(18), (21), (2) subject to the initial condition (22) with V=() and

A“=ofltt  =().

Since Eq. (21) is supersensitive to inevitable errors in (22), the solution

will form an ensemble of chaotic time series, and for any fixed instant of time this

ensemble will have the corresponding probability distribution which coincides

with (26). In other words, the probabilities described by Eq. (1 2), are simulated

by the dynamical system (1 8), (21) and (2) without an explicit source of

stochasticity  (while the “hidden” source of stochasticity  is in finite precision of

the initial condition (22)).
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Combining several dynamical systems of the type (18), (21), (2). and

applying an appropriate change of variables, one can simulate a probabilistic

Turing machine which transfers one state to another with a prescribed

transitional probabilities. Non-Markovian properties of such a machine can be

incorporated by introducing time-delay terms in Eq. (2).

;’= ‘u(/) + a,v(H, ) -t a21)(f–2 r(,) +.... (28)

However, there is a more interesting way

complexity of the system (1 8), 21), (2). Indeed,

to enhance the dynamical

let us turn to Eq. (23) and

introduce a feedback from Eq. (2) to Eq. (18) as following:

C= E()(.Y– X), 60 ( (  l,y=y–().  sl (29)

Then the number of negative (positive) signs in the string (25) will prevail

if x ) O (x ( O) since the effective zero-crossing line moves down (up) away from

the middle. Thus, when (x = O) at f =0, the system starts with an unrestricted

random walk as described above, anti 1x1 grows. However, this growth

changes signs in Eq. (23) such that ~ ( O if x ) O, and ; ) O if x ( O. As a result

of that
~

< Ynl#X,nlax ‘rein 2 Ymin ( 3 0 )

where yn,ax and yn,i” are the largest and the smallest values in the time series

y (t), respectively. Hence, the dynamical system (1 8), (23), (2) simulates a

restricted random walk with the boundaries (30) implemented by the dynamicd

feedback (29)’, while the probability

1 0



{
P(sifyf)())  = ‘) ‘f x 2 -L!!!——. —.-

1 if x < y,,,,,,
(31)

For the sake of qualitative discussion, assume that p change linearly between

.,,,,,, and .x=y,,,,,,  )i.e.,~G)l

( o if .Y>y[,,,,x

{

P = ‘“”L- 3-_. —.. <1- s y,,,,,,if Yllll[l — (32)
.Yn,ax  ‘“ .Yn,i,,

1 (f x ‘Yr,, in

(the actual function p(x) depends upon statistical properties of the underlying

chaotic time series y(t). In particular, for the logistic map (20), small deviations

from (32) take place only around the ends (i.e., when xz y,,,,,  or x= y~,,t,  ).

Then the simulated restricted random walk as a solution to Eqs.  (12) and

(32.)

Let us modify the feedback (29) as

c = Eo[y - (x’ -x)]

Now when x=O at t=O, the system is unstable since

1
,Ygtlx=Lv//tl  ;, -Oo (x( — ,

2

(33)

(34)

and the process is divided into two branches. The negative branch (with the

probability 1/2) represent an unrestricted random walk (X -+ 00), while the
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positive branch (with the same probability z ) is eventually trapped within the

basin of theattractorx=  1 since

(35)

simulating a restricted random walk as those described above with the only

difference that its center is shifted from x = O to x = 1.

As a next step in complexity, introduce the information H associated with

the random walk process described by Eqs. (12), (13):

1[ = - jflog2 j-cix
—c.,

and modify the feedback (29) as following:

c = co [y- X(l + //)]

(36)

(37)

Following the same line of argumentation as those performed for the

feedback (29), one concludes that the feedback (38) becomes active only if the

process is out of the domain of the maximum information, and therefore, it is

always attracted to this domain.

Since Eq. (31) is still valid, we will apply the approximation similar to

(32):



(Wo(l+w,’- m,, x

I ‘“--
p c J’!l!lx - -~(1 + //)

y“,,,,  –  )’,,,,,,

~ (f x (1 + 11) <y,,,,,,

(38)

in order to continue our qualitative analysis. It should be noticed that now p

depends not only on x, but also on f, and that makes Eq. (12) nonlinear. In

addition to that, the system (1 8), (2) and (37), which is simulating probabilities,

is coupled with the system (12), (13) and (38) describing the evolution of

calculated probabilities. Actually due to this coupling, the entire dynamical

system attains such a self-organizing property as to maximize the information

generated by the random walk.

The self-organizing properties of the system (18), (2), (37), (12), (13) and

(38) mentioned above have a very interesting computational interpretation:

they provide a mutual influence between different branches of probabilistic

scenarios. Such an influence or interference, is exploited in hypothetical

quantum computer (P. Shor, 1996) as a more powerful tool in a complexity

theoretic sense, than classical probabilistic computations. However, in

quantum computer, the interference is restricted to a

transformation of probabilities (which

mechanics laws), while in the classical

restriction; by choosing an appropriate

is the only one

system (1 8), (2),

probabilistic term

we can provide an optimal interference. The price paid for

linear unitary matrix

allowed by quantum

(37) there is no such

in the feedback (37),

such a property is the

necessity to exploit the calculated probabilities (1 2), (13) and (38).

Finally con~,der  the following two dimensional system:
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i+= vv~ sin ox -t f<,
(“ )
J’- .r2 , i, = 7), ( 3 9 )

( 4 0 )

with respect to variables xl ml X2

Eqs.  (39) and (60) are coupled via the feedbacks, but their associated

probability equations are not coupled:

.f, (J-, !%J + t) = P,(x,).f,(  a-,  - h,x,,l)+ [1 - p,(x2)].f,(x,  ~“ h,x,, f) (41)

where

I o ifA~2 >1

p, == +()1-;2 if a~2 <1, P? (43)

( 4 4 )

It should be noted that Xz and x, enter as parameters into Eqs.  (41), and (42)
respectively. That is why /l(x,lx,  ) cIw1.fl(x?lxi) represent conditional

probability densities: ~, describes the density of x, given x, and f,

describes, the density of X2 given x,.
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The solution to Eqs. (41) and (42) subject to the initial conditions (26),

and the condition (13) for a sufficiently small initial time interval t are:

( 4 6 )

Each of them represents a non-symmetric random walk before the reflections

from the boundaries Ixll = ],lx~l  = I take place.

Now the following question can be asked: how to find an underlying joint

probability density CD(X1X2) ? It turns out that this is a hard question even from a

conceptual viewpoint. Indeed, the relationships between .~,(x11x2),  .f,(x,lx, )

and d~(xl,xj ) are the following:

.,

qw,) = f,(+-,) p++ pz = f,(l-,lx,  )Jcb(x,,z)dz
-c., -m

whence



i.e.

arid therefore

~2
/,, fl (J-M ~(]—  .

dx, ih. f, (X21 X,)
(47)

Thus the existence of the joint probability density @(x,,  x2) requires that the

conditional probability densities must satisfy the compatibility equation (47). But

it is easily verifiable that the solutions (45) and (46) do not satisfy this equation,

i.e., they are incompatible:

(48)

At the same time, there is nothing wrong with these solutions since they

describe two stochastic processes which can be implemented by dynamical

simulations. Hence, the only conclusion which can be made is that the joint

probability in this particular case does not exist! But how “particular” is this

case? Based upon the degree of arbitrariness to which the feedbacks in the

system (71 )(72) can be “set up, it is obvious that the incompatibility of the

conditional probabilities is a rule rather than an exception. In other words, there

is a class of coupled stochastic processes for which joint probability does not

16



exist, and therefore, they are inseparable

variables which would break them down

The mathematical formalism exploited

i.e., there is no such transformation of

nto independent components.

in

based upon the relationships between the

(l), (2) simulating random walk, and the

all the previous discussions was

non-Lipschitz  dynamical equations

discretized  version of the Fokker-

Planck  equation (12) governing the evolution of the probability corresponding

to this random walk.

A continuous version of Eq. (12), i.e., the Fokker-Planck  equation, is

obtained if

v - (04/3 ,fltl(l  (0 -+ - ( 4 9 )

Indeed, then:

(50)

and Eq. (12) reduces to the Fokker-Planck equation:

(51)

where f is the probability density

There is a mathematical similarity between the Fokker-Planck and the

Schrbdinger  equations: e.g., (51) is formally equivalent to the Schrodinger

equation with imaginary times:
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t =—
s, /1 j(, ;= +-] (52)

Indeed, after replacing the probability density f in Eq. (51) by the probability

amplitude VI .

one arrives at the Schrodinger equation:

(53)

Continuing this analogy, one may ask: does there exist a dynamical system

which simulates the Schrodinger  equation (53) in the same way in which the

dynamical system (1 ),(2) simulates the Fokker-Planck equation?

does.

The formal mathematical answer to this question is very simple: yes, it

Indeed, turning to Eqs.  (l),(2) and introducing an imaginary time

t, = it (54)

one obtains

[1X (iv*—= V,,-= vv~’3Siri cot,, v -  0)’J3,  0.) + ~
dt * {it

18
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Formally this system is identical

random walk whose probability is

to Eqs. (l),(2), and therefore,

governed by the Fokker-Planck

it describes a

equation:

(56)

or, after returning to the real time t, and replacing f by ~~ by the Schr6dinger

Equation (53).

Let us establish formal relationships between the parameters vand [o of the

dynamical system (55), and the quantum characteristics of a particle.

Identifying co with the wave frequency of the particle, one obtains:

( 5 7 )

where E is the particle energy, and h is the Planck  constant,

The actual transition to the continuous limit from Eqs. (1 2), (13) to the

Fokker-Planck  equation (see Eqs. (49) and (50) is restricted by the uncertainty

principle

i.e.

])= -L
2t?l

(58)

(59)
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where m is the mass of the particle.



Then, as follows from (9), (57) and (58):

(60)

Thus, Eqs.  (57), (59) and (60) express the parameters of the dynamical

system (55) and the corresponding Schrodinger  equation via the physical

characteristics of the particle.

Surprisingly, the mechanism of the instability of Eqs. (55) is explained

much easier here than those in the classical case: it just follows from the

uncertainty principle which rejects a possibility that initial conditions for both the

position and the velocity of a particle are known exactly.

However, for the purpose of actual simulations of the Schrodinger

equation (53), the dynamical system does not offer much (since it evolves in

imaginary time), unless it can be given a meaningful physical interpretation. A

mathematical formalism for such an interpretation can be borrowed from special

theory of relativity in which physical events are mapped into a pseudo-

eucledian  space with real space coordinates and imaginary time. A much

broader concept of conjugate complex time in physics in connection with

transfinie Cantorian spaces, quantum field theories and the problem of

irreversibility is discussed in recent papers by El Naschie (1995, 1996), El

Naschie and 1. Prigogine  (1996), El Naschie, Q. E. Rossler  and G. Ord (1995).



However, the main question which we pose here is not in mathematics,

but rather in physics: does the dynamical system (55) exist in real physical

world?

The discovery of chaos in classical mechanics raised many questions

among quantum physicists about a possibility that there is a deterministic

microstructure behind the Schrodinger  equation, and as a result of instability,

this microstructure loses its determinism and “collapses” into probabilistic world

in the same way in which deterministic Newtonian dynamics attains

stochasticity  due to chaos. Such speculations were encouraged by views

expressed by A. Einstein who had never been comfortable with the probabilistic

origin of quantum mechanics. From this viewpoint, the dynamical system (55)

represents an alternative to this probabilistic origin: it is fully deterministic

(since it does not include any random parameters); it is driven by instability

triggered by uncertainties in initial conditions (in this context, the uncertainty

principle in quantum mechanics plays the same role as the finite precision of

initial conditions does in classical mechanics); and finally, the evolution of

probability resulting from instabilities is described by the Schrodinger  equation.

At this stage, we cannot prove (or disprove) existence of a deterministic

origin of quantum mechanics. But we can make the following statement: if such

a deterministic origin exists, its phenomenological  structure is likely to be similar

to those of Eqs. (55).
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APPENDIX

Classical dynamics describes processes in which the future can be

, derived from the past, and in which the past can be traced from the future by

time inversion, ( + -/. Because of such determinism and reversibility, classical

dynamics becomes fully predictable, and therefore, cannot explain the

emergence of new dynamical patterns in nature (as nonequilibrium

thermodynamics can). This major flaw in classical dynamics

attention of many outstanding scientists (Gibbs, Planck,  and

others).

has attracted the

Prigogine, among

Considering the governing equations of classical dynamics

_ _ _  A(i al. dR
i=l,2,..., )i

(It (%ji C%f, c%ji

(where L is the Lagrangian, q,~i are the generalized coordinates and

and R is the dissipation function), we should recall that the structure of

(Al)

velocity,

‘(dj ? . . .,~n) is not prescribed by Newton’s laws: some additional assumptions

must be made in order to define it. The “natural” assumption (which has been

never challenged) is that these functions can be expanded in Taylor series with

respect to equilibrium states ~, = 0, Clearly, this requires the existence of the

derivatives.

.. . . . <~ at(ji+(),qj+()
dq,dijj
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A departure from that condition is proposed by [Zak,  1992] where the

following dissipation function is introduced.

in which

k=J-<1 ,)>>1
p+2

(A2)

(A3)

where p is a large odd number. By selecting large p, we can make k close to 1,

so that (A2) is almost identical to the classical assumption (when k=l )

everywhere excluding a small neighborhood of the equilibrium point ~j = 0;

whereas, at that point

d’i?
C3(jid(jj ‘+ M (It (jj –) o (A4)

Thus, the Lipschitz  condition is violated; the friction force 1; = -(JR/ d~, ) grows

at the equilibrium point, and then it gradually approaches its “classical” value.

This effect can be interpreted as a mathematical representation of a jump from

static to kinetic friction, where the dissipation force does not vanish with the

velocity.
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It appears that this “small” difference between the friction forces at k=l

and k < 1 leads to fundamental changes in Newtonian dynamics. In order to

demonstrate this, we consider the relationship between the total energy E and

the dissipation function R.

(1E—=.z ~=-[q(ji -
(Ii , ,

(A5)

Within a small neighborhood of an equilibrium state (where the potential energy

can be set to zero), the energy E and the dissipation function R have the

respective orders

Hence, the asymptotic form of (A5) can be presented as

dE—~ AEk+ ‘t2 (It E + O, A = Comt
(It

(A7)

If A>O and k<l, the equilibrium state E=O is an attractor where the

Lipschitz  condition (l/l )dE dE + -at E + O is violated. Such a terminal attractor

is approached by the solution originated at E = AE,,  >0, in finite time, as follows.

24
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Clearly, this integral diverges in the classical case k 21, where f,, - + ~. The

motion described by (A7) has a singular solution E = (I, and a regular solution

(A9)

In a finite time, the motion can reach the equilibrium and switch to the singular

solution E=O, and this switch is irreversible.

The coefficient k can be found from experimental observations of the time

to. In order to illustrate this, we consider a plane-incompressible flow, with a

stream function y~ and the constitutive  law

(Al O)

where O,Y, V,, atld Vv are viscous stress and Cartesian projections of velocity.

Based upon the relationship between the rate of change of the kinetic energy

and the dissipation function, we obtain..

;q(%)’+(g] “X’’Y+JGHW” “X’” ( A l l )

where p is density, p] is viscosity, and V is te volume occupied by the fluid.

25



,

,

Suppose that yl(f,~-,y)  can be represented as a product yf = ij7(f)~~(x,y).

then (Al 1 ) reduces to the ordinary differential equation with respect to

p(f) = ~’(l) as follows.

and

(Al 2)

ccmt,
“=pL

P

Equation (A12) describes the damping of the fluid motion due to viscous stress

(Al O). The equilibrium state represents a terminal attractor which is

approached in a finite time:

?(, = d’ h
w,(I -k)

w,, = P(o) (Al 3)

Equation (Al 3) allows one to evaluate k and v, from experimental

measurements of to.

In conclusion, we stress again that all the new effects of terminal

cjynamics  emerge within drastically diminishing neighborhoods of equilibrium

states, which are the only domains where the governing equations are different

from the classical models.
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